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Let us chegk the functional (39) and (40) by studying their special cases for the isotropic guide, i.e., for ~ = ~ = O. Writing L. =
.

(Pe –u~)&and MT= M, we have

j,~~f” 1-MVf +~Vf* . Ju: X Vf dS

J(tiP; f ) = –

!
f*MfdS

J,+[elvel’:plvhl’+ :a{uz.vexvh.l]ds

This expression can be seen to coincide with that given in [10]

(note that the factor 1 /oP in the (21) of the referenced paper is

erroneously missing).

III. DISCUSSION

The functional (39) is exact and presents ati obvious extension

of previously known functional from isotropic to hi-isotropic me-

dia. It can be applied to obtaining approximate mode solutions for

open hi-isotropic waveguides. By approxitnating the longitudinal

field functions, the dispersion function (3(u) can be obtained point

by point. In practice, this can be performed using the following

scheme:

1.

2.

3.

4.

5.

6.

7.

Choose a value for the phase velocity parameter VP.

Find suitable approximating functions for the longitudinal

fields e( p) and h( p), i.e., the matrixf( p), with free param-

eters. Insight on the field distribution of the problem will

help in allowing use of just a few pammeters; otherwise, a

massive computation scheme with a great number of param-

eters is needed.

Optimize values of these parameters so that the functional

J(vP; f ) obtains the stationary value; i.e., its differentiation

with respect to all these parameters is zero. (In case of large

number of parameters this requires use of some optimization

procedure.)

The corresponding parameter values inserted in the longitu-

dinal field expressions give closest approximations to the

fields and the functional value approximates the value of ~ 2.

Now it is eas to determine a point on the dispersion dia-

gram: u = f U’, b = @,.
The transverse field functions corresponding to this point are

obtained from (23).

To find another point, start with anothler value of VP

Thus, the procedure works best when some a priori knowledge of

the longitudinal fields exists, which helps in finding suitable ap-

proximating functions with not too many optimizable parameters.

Obviously, the method is especially attractive for finding the low-

est-order modes with least spatial variation. ‘To find the knowledge

required, it appears necessary to work through some examples with

brute-force technique. This is, however, outside the scope of the

present theoretical study.
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Analysis of Bilateral Fin-Lines on Anisotropic

Substrates

Thinh Quoc Ho and Benjamin Beker

Abstract—A full-wave analysis of the bilateral fin-line on anisotropic
substrates is presented. The supporting medium is characterized si-
multaneously by both nondiagonal second rank [e] and [p] tensors. The
dyadic Green’s function is formed rigorously in tbe discrete Fourier
transformed domain and is used to study the propagation character-
istics of the fin-line, The Green’s function elements are given explicitly
in their closed forms along with the verification of the theory. New data
describing the dispersion properties as functions of the coordinate mis-
alignment are also generated for several substrate materials.

1. lNTRODuCTION

Although the theories of transmission lines on anisotropic struc-

tures are well documented, the major effort thus far has been di-
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rected toward structures whose substrates are characterized by a

diagonalized [e] tensor only. A review of the treatments to those

problems outlining the procedure for the study of the propagation

characteristics of various transmission lines may be found in [l]-

[3]. In practice, however, most of the above analyses are somewhat

limited in scope due to the absence of the off-diagonal elements in

tbe permittivity tensor, which may be used to represent the mis-

alignment between the material coordinate system and that of the

waveguide, as indicated in [4]. In addition, the response to the

magnetic fields for the aforementioned cases is normally assumed

to be isotropic, that is, when [p] is specified as a zero-rank tensor

(scalar). For problems involving transmission lines on general an-

isotropic substrates, that is, when the materials are characterized

by both permittivity and permeability tensors, the solution to Max-

well’s equations required for the study of their propagation char-

acteristics, can no longer be obtained in a straight forward manner.

Up until now, there are only a few publications [5]-[8] which have

reported some research efforts dealing with transmission lines

whose substrate material is characterized simultaneously by both

[,] and [y] tensors. The fact that the shielded transmission lines on

a general anisotropic media have not yet received full attention, as

did their counterparts printed on substrates characterized by [e] ten-

sor alone, provides the motivation for this work.

The purpose of this paper is to present the analysis of bilateral

tin-lines on general anisotropic substrates. In this study, unlike

some others conducted in the past, both [e] and [p] tensors are

nondiagonal. As a result, the Green’s function derived herein may

be used to examine the dispersion properties of the structure on

both dielectric and magnetic substrates. The bilateral fin-line is se-

lected mainly due to its popularity in applications at millimeter-

wave frequencies. Also, this type of a transmission line does not

support a TEM-like mode. It has a cut off at lower frequencies, and

as such is fundamentally different from other transmission lines. At

the present time, there is no comprehensive treatment of this strtrc-

ture that is printed on the type of anisotropic materials considered

in this study. Consequently, the aim of this work is to present the

analytical tools which can be used in the analysis of bilateral fin-

lines whose substrates can exhibit a wide variety of anisotropic

properties.

II. THEORY

The cross section of the bilateral fin-line is shown in Fig. 1 along

with the coordinate system used in the analysis. The millimeter-

wave circuit using the fin-line is usually excited by a dominant

TEIO mode of the rectangular waveguide having dimensions a and

b. The direction of propagation of the resulting wave is along the

z-axis. In this geometry, the gap that separates the metal fins is

denoted as W. The supporting substrate onto which the fins are

mounted is suspended along the E-plane of the waveguide, and is

specified by

Vlr Pxy o

[P] = P. w), Pyy o (lb)

o 0 /Az

/-x
x—

~ h,hq-j\,
Y

Fig. 1. Geometry of the bilateral tin-line on a general anisotropic sub-
strate.

that may exist within the planar anisotropic region, the two curl

equations are employed. It can be shown that the vector wave equa-

tions for all components of the electric and magnetic fields may be

written compactly in the form of

Vx([p] “ “ VXE) – k~[e] “ E = O (2a)

Vx([e] -‘ . VXH) – k~[~] “ H= O (2b)

where k. is the free-space wave number.

To obtain the field solutions witbin the anisotropic medium,

either the wave equation for E or the wave equation for H may be

used. It is more convenient to work with the wave equation for the

electric field mainly because the problem involves several electric

ground planes which belong to the housing. Consequently, the vec-

tor wave equation for the electric field may be reduced to three

scalar equations which can be written in terms of the electric field

components alone. The process of separating (uncoupling) these

equations to get a set of independent equations for individual com-

ponents of the E-field begins with their transformation to the Fou-

rier domain.

The spectral representation of any field component is defined via

the following transform:

!

b/2

*(X, a) = V(x, y) eJoy dy (3)
–b/2

where a = rrm/b is the discrete transform variable. As a result,

the three scalar equations for the components of the electric field

are transformed into the Fourier-domain according to definition (3).

With the help of the divergence equation, l?X is eliminated, yielding

a set of two coupled equations for EY and ~,. In general, the coupled

equations may be expressed in terms of any two field components.

However, in this formulation, the two components that are chosen

are ~y and ~Z. With that choice, the coupled differential equations

for Ey and E, can be shown to satisfy

a2EY a~, a~
~+ Y,x+Y2Ey+Y3: +Y4EZ=0
ax

(4a)

a2~ - aRY
~+z, ~+ Z&+z3z+z4Ey =0
ax 2

(4b)

where Cd and PO denote the free-space values of permittivity and

permeability, respectively.

To determine the types of solutions for the electromagnetic fields,

with their coefficients given by

Y1 = –jcwXY/e= + jaYO I’P,Z (5a)
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Y. = {k: tYX/.LZZ– a ‘eV,/eXX – @2pXYp,:/p~]

{ -k:e~ + CY2/yU + (12~~/p,} “ (5b)

~d = k,~yy – h~ #@ (5C)

Y2 = {k:eYYpz – CY2~yY/~n – f12PYYP,,/P~

– (62#~./pd – k:~.,) y.} (5d)

YS = j~p,, ih~/pd + jfi~xx ‘o /@d (5e)

Y, = @~yy&/Pd – Q’&:,/Eu + c@lJYr ‘o/pal (5f)

Z, = ‘JCYI.@/p.W – Jffl-b.v/Vxx + jfkrzo/!4d (5g)

‘O = {a6&xy/kr – @eyx/f.w} { ‘kg~xx + ff 2/p:z + @P,u/Pd}”

(5h)

Zz = {k%i#d/& – ~2i-LYy/I& – @26Zz/~~c+ C&y.zo/ILd} (5i)

23 = j@Yx/pm – j&Xv/~X + j~zo /k (%)

z4 = C@iJJy/P., – aPEyy/eia – (B2Fy,r/AI – I&y)zo. (5k)

These coefficients are functions of the medium parameters, trans-

form variable a, ko, and the propagation constant P which is de-

fined along the z direction.

Decoupling of the above set is possible by the substitution method

which after some manipulations leads to yet another, but an inde-

pendent pair of fourth-order differential equations for these com-

ponents of the electric field, i.e.,

~4~ a3EY d2EY aEY
‘+A— ~+ C%+ D~Y=O
8X4 ax3 + B ax

(6a)

where the transformed constants A, B, C, and D are defined below:

A = Y, – (Y4 – Y3z,)/Y3 +
Y3q + Y4(Y4 – Y3z, )/Y3

Y4 – Yj(;z, – z2Y~ /Y4)
(7a)

B = Y2 – Y3Z3 – Y,(Y4 – Y3z,)/Y3 + (Y, + Y3z~/Y4)

. Y3Z2 + Y4(Y4 – Y3z,)/Y3

Y4 – YJZ, – z~Yq/ Y4)
(7b)

c = –Y3Z4 – Y~(Y4 – Y3z,)/Y3

Yyz2 + Y4(Y4 – Y~z,) / Y3
+ (Y2 – Y3Z3 + Y3Z2Y, /YJ —

Y4 – Y3(Z, – z’Y~ / YJ

(7C)

D = – Y3(Z4 – Y2Z2Y4)
Y3Z2 + Y~(Y4 – Y3z,)/ Y3

Y4 – Y3(Z, – 2;Y3 /Y4)
(7d)

and where the coefficients E, F, G, and H are also functions of YI,

Y2, Y3, Y4, Z1, Z2, Z3, and Zq. Within a shielded housing, the so-

lutions to (6) are standing waves. In general, these solutions are

written in terms of sinusoidal and cosinusoidal functions. Due to

the symmetry of the structure, the boundary conditions require the

tangential magnetic fields to be zero at the magnetic wall (x = O),

reducing the general solutions to having cosine functions only.

Subsequently, when the two tangential electric field components

have been determined, the remaining fieldl components such as

& HI, HY, and HZ may be expressed in terms of ~V and ~, through

the Maxwell’s curl equations. On the other hand, in the isotropic

region, the field components may be found by using the scalar po-

tential functions. The procedure for finding them is already avail-

able in [9], and therefore, will not be repeated here.

Once all the field components in both regions are known, the

Green’s function of the structure may be obtained by enforcing the

appropriate bounclary conditions at the air-substrate interface

q, = .EY2 (8a)

E,, = E,’ (8b)

Hy, – HY2 = –J: (8c)

where ~Y and JZ ~are the Fourier transforms of unknown cm-rent

densities .lY and J, on the fins at x = h,.

After some mathematical manipulations, the dyadic Green’s

function in the Fourier transformed domain is found to relate the

fields across the sl[ot to the currents on the fins through the foUow-

ing matrix equaticm:

(9)

with the expressicms for GYY, ~),, G,y, (?,2 given in the Appendix.

Notice that l?z and ~Y in the above equations are finite across the

slot at x = h, for O < I yl < w/2, but they are zero on the metal

fins. In order to find the numerical solution, the aperture fields are

expanded using the known basis functions [9],

,!4

q(n) = ~~, cm EYm(a(n)) (lOa)

N

~Z (n) = & Dml$:m(a(n)) (lOb)

with CM and Dm being the unknown expansion coefficients. After

the appropriate substitutions between (9) and (10) along with the

application of the Parseval’s theorem in the discrete Fourier do-

main, the system of matrix equations which is used to extract the

propagation constant ~ is formed:

~ K~:’)Cm + ~ K::’)Dm = O i=l,2,3, . ..iV
~=j ~=1

(ha)

(Ilb)

with its elements given by

K,m( p, q) = j. EYp(rz) Gpq(n, ,8) g,,(n) (llC)

where p or q can be either y or z. The roots which correspond to

the propagation constants are found by setting the determinant of

the coefficient matrix equal to zero, and solving the resulting equa-

tion (11) using the technique described in [9].

III. RESULTS

To validate the newly derived expressions of the Green’s func-

tion elements, numerical results for the effective dielectric constant

Cefi ( ~2/k~) for two special cases are computed and compared to

the existing data. l[n the first case, the supporting medium is taken

to be isotropic with CX1= CVV= C,Z = 3.75, y.,., = VY, = LLZZ= 1.0,
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and EXY= eYX= pXY = pj,. = O. The chosen housing is a standard

WR-28 waveguide, with the remaining dimensions given by h, =

0.0625 mm, hz = 3.4935 mm, and W = 0.5 mm. For the second

case, all physical dimensions of the structure are the same, but the

substrate is a dielectrically anisotropic medium with c.. = CZZ=

3.0, eyy = 3.5, ~XX = KYY= v,? = 1.0, and c.} = cY, = P.} = WY.

– O. Fig. 2 shows the effective dielectric constant computed by—

this method along with the data produced from [2], [9]. The com-

parison of the results indicates that, in general, the agreement is

very good. For the isotropic substrate, the Cef matches very well,

including frequencies below the designated bandwidth (26.5 GHz–

40.0 GHz). However, for the uniaxial material, a minor discrep-

ancy is observed at frequencies near the cut off point, but other-

wise, everywhere else, the agreement is good. This difference in

the results near the cut off can probably be attributed to the nu-

merical convergence of the data obtained by the two methods. In

all of the calculations presented in this paper, the values of N = 5,

M’ = 5, and n = 350 terms were used to ensure convergence.

Now that the Green’s function has been validated, the effects of

the nondiagonal elements in the [e] and [~] tensors on the disper-

sive properties of bilateral fin-lines can be examined. First, the

permeability tensor of the substrate is made isotropic by allowing

PM = ~~~ = P,, = 1.0 with P,Y and PI,. = 0. The effective dielectric
constant of the fin-line is then studied as a function of the rotation

angle 6 which in practice may be used to represent the misalign-

ment between the coordinate system of the waveguide and that of

the substrate material. This leads to the following definitions for

the tensor elements of the permittivity appearing in (la): ~.. = Ez

sin2 (0) + El COS2(0), eY} = CzCOS2(0) + El sinz (0), CZZ= E3, and

E.ly = ~J. = (62 – cl) sin (19) cos (19), where e,, C2, and Eq are the

principal values of the [c] tensor. Numerical results in Fig. 3 show

the response of eeff when the fins are printed on the PTFE or glass

cloths, both of which are dielectrically biaxial substrates. The ef-

fective dielectric constant of the fin-line is computed at frequencies

of 26.0 GHz, 33.0 GHz, and 40.0 GHz and is plotted versus the

rotation angle 0. As can be seen from this figure C,r becomes larger

with increasing frequency, however, for both of the cloth materials

it is decreasing, but only slightly, as the angle O varies from O to

90 degrees. This behavior is totally opposite to that of the micro-

strip line wherein it is found e.ff increases with values of the rota-

tion angle changing from 0° to 90°, as illustrated in [10].

Next, the response of C.F belonging to the fin-line structure which

uses a dielectrically uniaxial substrate is examined. The two chosen

substrate materials are boron nitride and sapphire with the physical

dimensions of the housing being the same as those used above. A

very interesting behavior can be observed from the numerical re-

sults which are plotted in Fig. 4. In the case of a fin-line printed

on sapphire, the value of the effective dielectric constant increases

with the rotation angle, while for the boron nitride substrate the

opposite is true.

Finally, to demonstrate the flexibility of the theory presented in

this paper, the propagation properties of bilateral fin-lines using

more general an isotropic media are computed. The medium perme-

ability is now characterized by a second rank tensor whose ele-

ments are given by I.LJX= Pz Sin* (P) + # I COS2 ($0), LLYY = LL2 COS2

(~) + PI sin2 (~), ,u,, = W, and LL.Y = W. = (IL2 – VI) sin (+1) cos
(p). In this case, variables p, p,, M, and W3are the analoges of 0,

e,, Ez, and es, respectively. Fig. 5 illustrates how the normalized

wavelength AH reacts to the addition of the magnetic anisotropy.

The substrate material parameters used in computations were e, =

8.7, C2 = 9.6, C3 = 11.4, p, = 1.0, p2 = 1.6, andpj = 1.8. The

calculated data indicates that the presense of the [IL] tensor effec-

tively shortens the normalized wavelength of the fin-line consid-

erably. This effect can be seen for both diagonal (q = 0°, 90°) as

2.1

1.7

E

~ ‘“3

B
v
w
~ 0.9
G4
w

0.5

0.1

ooo Data from [91

xxx Data from 12]

-----.--
This method

10 20 30 40

FREQUENCY ( GHz )

Fig. 2. Effective dielectric constant of the bilateral fin-line with a = 7.112
mm, b = 3.556 mm, hl = 0.0625 mm, hz = 3.4935 mm, w = 0.5 mm on

isotropic substrate with e, = q = q = 3.75 and VI = LL2= K3 = 1.0, and
dielectrically uniaxial substrate with c, = c1 = 3.0, q = 3.5, and LL1= M
=~~ = 1.0.

~ 1GLASS CLOTH

~
1.2

PTFE CLOTH I

0.8 -------- 33.0 GHz

----- 40.0 GHz

o.,~o

ROTATION ANGLE ( DEG)

Fig. 3. Effective dielectric constant versus O of the bilateral fin-line on

PTFE and glass cloths with a = 7.112 mm, b = 3.556 mm, h, = 0.0625
mm, h2 = 3.4935 mm, w = 0.5 mm

I — 26.0 GHz
1.6

1
BORON NITRIDE .- 33.0 GHz

0

ROTATION ANGLE ( DEG)

Fig. 4. Effective dielectric constant versus O of the bilateral fin-line on
boron nitride and sapphire with a = 7.112 mm, b = 3.556 mm, h, =
0.0625 mm, h2 = 3,4935 mm, w = 0.5 mm.

well as non-diagonal (p = 450, permeability tensor, wherein, for

this set, all results were obtained at the center frequency of the

Ka-band.
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No~alized wavelength versus O as a function of p of the bilateral

fin-line ongeneral anisotropic substrate witha = 7.112mm, b = 3.556

mm, h, = 0.0625 mm, /az = 3.4935 mm, w = 0.15 mm, 6, = 8.7, q =

9.6, e,= 11.4, ~, = 1.0, 1J2= 1.6, andp, =l.8, and~=33.0GHz. (a)
[<]only. (b)[e]and [p]p=OO. (c)[e] and[#]p =45 °.(d)[c]and[#]p
= 90°.

IV. CONCLUSION

A full-wave analysis based on the spectral-domain technique of

bilateral fin-lines on anisotropic substrates was presented. The for-

mulation of the Green’s function was carried out in the discrete

Fourier transformed domain. J30th the magneti~ and dielectric an-

isotropy effects on bilateral fin-lines were examined to illustrate the

usefulness of the newly derived Green’s function for this structure.

The dispersion properties were computed for several substrate ma-

terials as a function of the misalignment, and it was found that in

some cases they can be greatly affected by the rotation of the co-

ordinate axes. These generalized expressions may also be used to

study the propagation characteristics of other transmission line

structures, besides the bilateral fin-line, when they are printed on

dielectric, magnetic, as well as mixed anisotrcrpic media.

APPENDIX

The dyadic Green’s function elements appearing in (9) are de-

fined beiow

Gyy(a, B) =

Gyz(a, B) =

Czy(a, @ =

Gu(a, B) =

*2 =

q+ =

q- =

with

8, =

62 =

tan (72Jz2),

tan (-y+hl),

tan (y_hl)

(Ala)

(Alb)

(Ale)

(Aid)

(Ale)

(Alf)

(Alg)

(A2a)

(A2b)

(A2c)

(A2d)

(A2e)

E;= –-y~ { –Z; ‘ + (Z3Z1Z, + @2) (Z! – Z?Z3YI + ‘4ziy2)}

+ { –Z2Z;’ – (Z:Y4Z4 – Z: Y2ZZ)

. (z! – Z!Z3Y, + Z4Z;Y2)} (A3a)

E- = –T:{ –Z; ]l + (ZSZ1Z4 + Z:YZ) (Z! – ZiZ~Y, + z4.@2)}
Y

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

(A3g)

(A3h)

where 72 is the transverse wavenumber in the isotropic region. Pa-

rameters T+ are the corresponding wavenumbers in the anisotropic—
region, and they are obtained by solving the fourth-order charac-

teristic equation using a technique similar to the one presented in

[10].
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