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Let us check the functionals (39) and (40) by studying their special cases for the isotropic guide, i.e., for £ = { = 0. Writing L=

(ue — v})l,and M7 = M, we have
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This expression can be seen to coincide with that given in [10]
(note that the factor 1/v, in the (21) of the referenced paper is
erroneously missing).

III. Discussion

The functional (39) is exact and presents ar obvious extension
of previously known functionals from isotropic to bi-isotropic me-
dia. It can be applied to obtaining approximate mode solutions for
open bi-isotropic waveguides. By approximating the longitudinal
field functions, the dispersion function 8(w) can be obtained point
by point. In practice, this can be performed using the following
scheme:

1. Choose a value for the phase velocity parameter v,

2. Find suitable approximating functions for the longitudinal
fields e( p) and A( p), i.e., the matrix f ( p), with free param-
eters. Insight on the field distribution of the problem will
help in allowing use of just a few parameters; otherwise, a
massive computation scheme with a great number of param-
eters is needed.

3. Optimize values of these parameters so that the functional
J(v,; f) obtains the stationary value; i.e., its differentiation
with respect to all these parameters is zero. (In case of large
number of parameters this requires use of some optimization
procedure.) ‘

4. The corresponding parameter values inserted in the longitu-
dinal field expressions give closest approximations to the
fields and the functional value approximates the value of w?.

5. Now it is easy to determine a point on the dispersion dia-
gam: » = Vw?, § = wv,.

6. The transverse field functions corresponding to this point are
obtained from (23).

7. To find another point, start with another value of v,

Thus, the procedure works best when some a priori knowledge of
the longitudinal fields exists, which helps in finding suitable ap-
proximating functions with not too many optimizable parameters.
Obviously, the method is especially attractive for finding the low-
est-order modes with least spatial variation. To find the knowledge
required, it appears necessary to work through some examples with
brute-force technique. This is, however, outside the scope of the
present theoretical study.
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Analysis of Bilateral Fin-Lines on Anisotropic
Substrates

Thinh Quoc Ho and Benjamin Beker

Abstract—A full-wave analysis of the bilateral fin-line on anisotropic
substrates is presented. The supporting medium is characterized si-
multaneously by bath nondiagonal second rank [e] and [ 4] tensers. The
dyadic Green’s function is formed rigorously in the discrete Fourier
transformed domain and is used to study the propagation character-
istics of the fin-line. The Green’s function elements are given explicitly
in their closed forms along with the verification of the theory. New data
describing the dispersion properties as functions of the coordinate mis-
alignment are also generated for several substrate materials.

I. INTRODUCTION

Although the theories of transmission lines on anisotropic struc-
tures are well documented, the major effort thus far has been di-
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rected toward structures whose substrates are characterized by a
diagonalized [e] tensor only. A review of the treatments to those
problems outlining the procedure for the study of the propagation
characteristics of various transmission lines may be found in [1]-
[3]. In practice, however, most of the above analyses are somewhat
limited in scope due to the absence of the off-diagonal elements in
the permittivity tensor, which may be used to represent the mis-

~ alignment between the material coordinate system and that of the
waveguide, as indicated in [4]. In addition, the response to the
magnetic fields for the aforementioned cases is normally assumed
to be isotropic, that is, when [ ] is specified as a zero-rank tensor
(scalar). For problems involving transmission lines on general an-
isotropic substrates, that is, when the materials are characterized
by both permittivity and permeability tensors, the solution to Max-
well’s equations required for the study of their propagation char-
acteristics, can no longer be obtained in a straight forward manner.
Up until now, there are only a few publications [5]-[8] which have
reported some research efforts dealing with transmission lines
whose substrate material is characterized simultaneously by both
[e] and [ u] tensors. The fact that the shielded transmission lines on
a general anisotropic media have not yet received full attention, as
did their counterparts printed on substrates characterized by [¢] ten-
sor alone, provides the motivation for this work.

The purpose of this paper is to present the analysis of bilateral
fin-lines on general anisotropic substrates. In this study, unlike
some others conducted in the past, both [e] and [u] tensors are
nondiagonal. As a result, the Green’s function derived herein may
be used to examine the dispersion properties of the structure on
both dielectric and magnetic substrates. The bilateral fin-line is se-
lected mainly due to its popularity in applications at millimeter-
wave frequencies. Also, this type of a transmission line does not
support a TEM-like mode. It has a cut off at lower frequencies, and
as such is fundamentally different from other transmission lines. At
the present time, there is no comprehénsive treatment of this struc-
ture that is printed on the type of anisotropic materials considered
in this study. Consequently, the aim of this work is to present the
analytical tools which can be used in the analysis of bilateral fin-
lines whose substrates can exhibit a wide variety of anisotropic
properties.

II. THEORY

The cross section of the bilateral fin-line is shown in Fig. 1 along
with the coordinate system used in the analysis. The millimeter-
wave circuit using the fin-line is usually excited by a dominant
TE,, mode of the rectangular waveguide having dimensions a and
b. The direction of propagation of the resulting wave is along the
z-axis. In this geometry, the gap that separates the metal fins is
denoted as W. The supporting substrate onto which the fins are
mounted is suspended along the E-plane of the waveguide, and is
specified by

€y &y O

[e] =€ e €y O (1a)
0 0 e
Hxx My 0

[u] = o |ty myy O (ib)

0 0 u,
where ¢, and p, denote the free-space values of permittivity and

permeability, respectively.
To determine the types of solutions for the electromagnetic fields,
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Fig. 1. Geometry of the bilateral fin-line on a general anisotropic sub-
strate.

that may exist within the planar anisotropic region, the two curl
equations are employed. It can be shown that the vector wave equa-
tions for all components of the electric and magnetic fields may be
written compactly in the form of

VX([pl™' - VXE) — K3l - E=0 (2a)

VX(fel '+ VXH) —ki[p]l - H=0 (2b)

where k, is the free-space wave number. .

To obtain the field solutions within the anisotropic medium,
either the wave equation for E or the wave equation for H may be
used. It is more convenient to work with the wave equation for the
electric field mainly because the problem involves several electric
ground planes which belong to the housing. Consequently, the vec-
tor wave equation for the electric field-may be reduced to three
scalar equations which can be written in terms of the electric field
components alone. The process of separating (uncoupling) these
equations to get a set of independent equations for individual com-
ponents of the E-field begins with their transformation to the Fou-
rier domain.

The spectral representation of any field component is defined via
the following transform:

b/2

o= | ve e a ®

where o = nw /b is the discrete transform variable. As a result,
the three scalar equations for the components of the electric field
are transformed into the Fourier-domain according to definition (3).
With the help of the divergence equation, E, is eliminated, yielding
a set of two coupled equations for Ey and E,. In general, the coupled
equations may be expressed in terms of any two field components.
However, in this formulation, the two components that are chosen
are £, and E,. With that choice, the coupled differential equations
for E, and E, can be shown to satisfy

azEy aEy - (')E~Z N
W+Y]§+Y2Ey+YSE+Y4EZ=O (4a)
9E dE N dE, 5
—(;2—1+ZI~B;Z+Z2EZ+Z33—;+Z4E),=O (4b)

with their coefficients given by

Yl = _jaﬁxy/exx + jaYo/lI"'zz (Sa)
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Y, = {kleppy — aep/ e = Bt/ a}
{~kiew + @ /uy + Bun/pay ™ (5b)
Bd = P flyy = ey Pyx (5¢)
Y, = {klepyp — o’ey/en — Bppyia/ b
— Bpp/ba = ko) Yo} (5d)
Yy = jBpotiny/pa + JBre Yo/ ta (Se)
Y, = aBuyp/ta — oBer /e + aBuy ¥,/ s (56)
Zy = —jopy/ e — joty/ te + JBRuZ,/ b g

Z, = {aﬁﬂxy/”'xx - aﬁfyx/exx} {_ktzzexx + az//‘:z + le"xx/ﬂd}_l

(5h)

ZZ = {kgezz”‘d//“'xx - azl‘yy//-".tx - Bzez:/em + aﬁ/"‘yxzo/.ua'} (51)
Z; = jﬁﬂyx/l‘xx - jfoy/Exx + jazo/l"’zz (&1
Z4 = aﬁ.u‘yy/#u - aﬁeyy/eu - (62uyx/l"d - kgexy)Z(r (Sk)

These coeflicients are functions of the medium parameters, trans-
form variable «, k,, and the propagation constant 8 which is de-
fined along the z direction.

Decoupling of the above set is possible by the substitution method
which after some manipulations leads to yet another, but an inde-
pendent pair of fourth-order differential equations for these com-
ponents of the electric field, i.e.,

O*E, >E, 9K, oE,
ax4+A(,’x3+Baz+c(,) +DE, =0 (6a)
I E. 33E- aZEd JE, .

JE; | . _
axt Ess ax’ ax? dx z (6b)

where the transformed constants A, B, C, and D are defined below:

72, + V(Y — VsZ) /Y5

A=Y — Y, - LZ)/Y; + - Ta
e A A A A
B=Y,~ YZ, ~ YWY, — ,2))/Y; + (Y, + 152,/
%7, + VY, — 7))/ Y,
. (7b)
Y, - (2 — 4,Y3/Y)
C=-YZ - L0 - Z)/1,
Y3Zz + LY, - BZ)/Y,
+ (Y, — hWZ, + Y2Z,Y, /Y,
67] 323 W21 /1) TV, — 2,/ Y
(7c)
YiZ, + Y, (Y, — Y3Z)/Y-
D= 1@ - vy et BB LRL gy,

Yy = Y32, = Y5/Yy)

and where the coefficients E, F, G, and H are also functions of ¥},
Y., Vs, Y4, Z,, Z,, Z;, and Z,. Within a shielded housing, the so-
lutions to (6) are standing waves. In general, these solutions are
written in terms of sinusoidal and cosinusoidal functions. Due to
the symmetry of the structure, the boundary conditions require the
tangential magnetic fields to be zero at the rmagnetic wall (x = 0),
reducing the general solutions to having cosine functions only.
Subsequently, when the two tangential electric field components
have been determined, the remaining field components such as
E. A, H and H may be expressed in terms of E and E, through
the Maxwell s curl equations. On the other hand, in the isotropic

region, the field components may be found by using the scalar po-
tential functions. The procedure for finding them is already avail-
able in {9], and therefore, will not be repeated here.

Once all the field components in both regions are known, the
Green’s function of the structure may be obtained by enforcing the
appropriate boundary conditions at the air-substrate interface

Ey = Ep (8a)
E,=E, (8b)
A, - Hy, = —J. @80)
A, - H, ='J, (8d)

where J, and J, are the Fourier transforms of unknown current
densities J, and J, on the fins at x = h;.

After some mathematical manipulations, the dyadic Green’s
function in the Fourier transformed domain is found to relate the
fields across the slot to the currents on the fins through the follow-
ing matrix equation:

(€)

s

with the expressions for G)y, Gy Gzy, G,, given in the Appendix.
Notice that £, and E, in the above equations are finite across the
slotatx =k, for 0 < | y| < w/2, but they are zero on the metal
fins. In order to find the numerical solution, the aperture fields are
expanded using the known basis functions [9],

M
Em = 2 CuEy(cm) (102)

N

E,(m = Zl D, E,,(a(n) (10b)
m=

with C,, and D,, being the unknown expansion coefficients. After

the appropriate substitutions between (9) and (10) along with the

application of the Parseval’s theorem in the discrete Fourier do-

main, the system of matrix equations which is used to extract the

propagation constant 3 is formed:

M N
21 K$YC, + E] K$9D, =0 i=1,23,--*N

(11a)
M N
2 KEYC, + Z. KD, =0 i=1,23,+-+N
m=1 m=
(11b)
with its elements given by
Knm(p, @) = Z Eypn) G, (n, B E,(n) (11c)

where p or g can be either y or z. The roots which correspond to
the propagation constants are found by setting the determinant of
the coefficient matrix equal to zero, and solving the resulting equa-
tion (11) using the technique described in [9].

III. RESULTS

To validate the newly derived expressions of the Green’s func-
tion elements, numerical results for the effective dielectric constant
e.r (B2/k%) for two special cases are computed and compared to
the existing data. In the first case, the supporting medium is taken
to be isotropic with €,, = €,, = €, = 3.73, e = py, = pp, = 1.0,
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and €, = €, = py = g, = 0. The chosen housing is a standard
WR-28 waveguide, with the remaining dimensions given by 2, =
0.0625 mm, h, = 3.4935 mm, and W = 0.5 mm. For the second
case, all physical dimensions of the structure are the same, but the
substrate is a dielectrically anisotropic medium with ¢,, = €, =
3.0, € = 3.5, py = fhyy = p, = 1.0, and €y = €, = py = pyy
= 0. Fig. 2 shows the effective dielectric constant computed by
this method along with the data produced from [2], [9]. The com-
parison of the results indicates that, in general, the agreement is
very good. For the isotropic substrate, the e.s matches very well,
including frequencies below the designated bandwidth (26.5 GHz-
40.0 GHz). However, for the uniaxial material, a minor discrep-
ancy is observed at frequencies near the cut off point, but other-
wise, everywhere else, the agreement is good. This difference in
the results near the cut off can probably be attributed to the nu-
merical convergence of the data obtained by the two methods. In
all of the calculations presented in this paper, the values of N = 5,
M =5, and n = 350 terms were used to ensure convergence.

Now that the Green’s function has been validated, the effects of
the nondiagonal elements in the [¢] and [ «] tensors on the disper-
sive properties of bilateral fin-lines can be examined. First, the
permeability tensor of the substrate is made isotropic by allowing
Pax = My = iz = 1.0 with u,, and pu,, = 0. The effective dielectric
constant of the fin-line is then studied as a function of the rotation
angle 6 which in practice may be used to represent the misalign-
ment between the coordinate system of the waveguide and that of
the substrate material. This leads to the following definitions for
the tensor elements of the permittivity appearing in (la): €, = ¢,
sin? (6) + ¢, cos® (8), €,, = €, cos” (0) + ¢, sin” (0), €., = €3, and
€y = €y = (&2 — €) sin () cos (0), where €, ¢,, and ¢; are the
principal values of the [e] tensor. Numerical results in Fig. 3 show
the response of €.z when the fins are printed on the PTFE or glass
cloths, both of which are dielectrically biaxial substrates. The ef-
fective dielectric constant of the fin-line is computed at frequencies
of 26.0 GHz, 33.0 GHz, and 40.0 GHz and is plotted versus the
rotation angle 6. As can be seen from this figure €. becomes larger
with increasing frequency, however, for both of the cloth materials
it is decreasing, but only slightly, as the angle § varies from 0 to
90 degrees. This behavior is totally opposite to that of the micro-
strip line wherein it is found e.¢ increases with values of the rota-
tion angle changing from 0° to 90°, as illustrated in [10].

Next, the response of €. belonging to the fin-line structure which
uses a dielectrically uniaxial substrate is examined. The two chosen
substrate materials are boron nitride and sapphire with the physical
dimensions of the housing being the same as those used above. A
very interesting behavior can be observed from the numerical re-
sults which are plotted in Fig. 4. In the case of a fin-line printed
on sapphire, the value of the effective dielectric constant increases
with the rotation angle, while for the boron nitride substrate the
opposite is true.

Finally, to demonstrate the flexibility of the theory presented in-

this paper, the propagation propetrties of bilateral fin-lines using
more general anisotropic media are computed. The medium perme-
ability is now characterized by a second rank tensor whose ele-
ments are given by g, = p, sin® (¢) + p, cos® (), Byy = 2 cos’
(gp) + p Sinz (90)7 Bz = K3, and Hxy = Pyx = (”2 - .ul) sin ((P) Ccos
(¢). In this case, variables ¢, u;, us, and uy are the analoges of 6,
€, €, and €3, respectively. Fig. 5 illustrates how the normalized
wavelength A, reacts to the addition of the magnetic anisotropy.
The substrate material parameters used in computations were ¢, =
87,6, =96, =114, u; = 1.0, u, = 1.6, and u3 = 1.8. The
calculated data indicates that the presense of the [x] tensor effec-
tively shortens the normalized wavelength of the fin-line consid-
erably. This effect can be seen for both diagonal (¢ = 0°, 90°) as

2.1
o oo Data from [ 9 ]

1.7 x x X Data from [ 2]
8 """" This method
E 1.3
[
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B 0.9
By
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Fig. 2. Effective dielectric constant of the bilateral fin-line witha = 7.112
mm, b = 3.556 mm, h, = 0.0625 mm, 4, = 3.4935 mm, w = 0.5 mm on
isotropic substrate withe; = ¢; = €3 = 3.75and u; = uy = p3 = 1.0, and
dielectrically uniaxial substrate with ¢, = 3 = 3.0, ¢, = 3.5, and u;, = p,
= pu; = 1.0.
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Fig. 3. Effective dielectric constant versus # of the bilateral fin-line on
PTFEE and glass cloths with @ = 7.112 mm, b = 3.556 mm, h, = 0.0625
mm, k, = 3.4935 mm, w = 0.5 mm.
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Fig. 4. Effective dielectric constant versus 6 of the bilateral fin-line on
boron nitride and sapphire with a = 7.112 mm, b = 3.556 mm, h, =
0.0625 mm, h, = 3.4935 mm, w = (0.5 mm.

well as non-diagonal (¢ = 45°) permeability tensor, wherein, for
this set, all results were obtained at the center frequency of the
Ka-band.
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Fig..5. Normalized wavelength versus ¢ as a function of ¢ of the bilateral
fin-line on general anisotropic substrate with @ = 7.112 mm, b = 3.556
mm, &, = 0.0625 mm, 4, = 3.4935mm, w = 0.15mm, ¢, = 8.7, ¢, =
9.6,¢; = 11.4, p) ='1.0, up = 1.6, and p; = 1.8, and f = 33.0 GHz. (a)
[6190(;101}'. (b) [e] and [u]le = 0°. (c) [e] and [p]e = 45°. (d) [¢] and [ule

IV. ConcLUSION

A full-wave analysis based on the spectral-domain technique of
- bilateral fin-lines on anisotropic substrates was presented. The for-
mulation of the Green’s function was carried out in the discrete
Fourier transformed domain. Both the magnetic and dielectric an-
isotropy effects on bilateral fin-lines were examined to illustrate the
uséfulness of the newly derived Green’s function for this structure.
The dispersion properties were computed for several substrate ma-
terials as a function of the misalignment, and it was found that in
some cases they can be greatly affected by the rotation of the co-
ordinate axes. These generalized expressions may also be used to
study the propagation characteristics of other transmission line
structures, besides the bilateral fin-line, when they are printed on
dieléctric, magnetic, as well as mixed anisotropic media.

APPENDIX

The dyadic Green’s function elements appearing in (9) are de-
fined below

G B) = 8 /%% + {HI ¥ — H ¥} /8, (Ala)
G la, B) = 85/ ¥% + {—E;H;\y* + EfH; Y7} /8, (Alb)
Golo, B) = 865/%7 + {—H} ¥ + H; ¥} /8, (Alc)
Gola, B) = 6s/¥> + {E; HY ¥* — EfH; %7} /6, (Ald)

¥ = tan (1,h), ' (Ale)
¥ = tan (v ), (ALD)
¥~ = tan (y_h;) (Alg)
with
8 = k: — B/ (A2a)
8, = (B — Ey)ii, (A2b)
8 = aB /v (AZc)
8 = (B = E]) iy (A2d)
s = (ks —ad)/va (A2¢)

y —72+{‘Z4" + (22,2, + Z3Y) (Z3 — ZiZ:Y, +‘Z4Z§Y2)}
+{-2z

(23 - ZiLY, + Z,Z3Y)}

.
1
Il

- @32, - 2302
(A3a)
E; = —v{-Z]" + (Z:ZiZs + 23 (Zi — ZiZY, + ZZ31)}

v {~2,Z" — @7, ~ N2

C(Z3 - ZIY, + ZZ3%0)} (A3b)
H, = {1/1=j87+(1 = pyeunn €x)l}

v = Klegma/p + @ty b

B/ taseye = B Bityy/ hae

+ E oy €/ o€yt (A3c)
Hy = {1/[=jBy-(1 = puyeuitn €)1}

Ay =kl egta/ e F 0y

+ Bty by — Ey aBiiyy/ phe

T E; By €y / tcr €y} (A3d)
H = — joH, + v.E (A3e)
H = —jaHg + v_E, (A3D)
HY = pypeps ' (—v+ +jBHL) (A3g)
HY = pypops ' (—v- + jBHp) (A3h)

where vy, is the transverse wavenumber in the isotropic region. Pa-
rameters v, are the corresponding wavenumbers in the anisotropic
region, and they are obtained by solving the fourth-order charac-
teristic equation using a technique similar to the one presented in
[10].
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